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What is Dynamic Programming?

Dynamic programming is where you break down the 
problem into smaller and smaller sub-problems.

 

Then, these sub-problems are solved in a way, and only 
once (no repetition) and stored, so their results can be 
re-used to solve more sub-problems. 


The sub-problems can then be used to solve the 
problem (e.g. summing, max, min, some function, etc.)



2 types of Dynamic Programming:

Bottom up

(Tabulation)

Top Down

(Memoization)



Bottom up
(Tabulation)

Bottom-up or tabulation is basically where you start at a 
starting point in a graph, vector, table, etc. and you calculate 
sub-problems in a specific order to store the answers to these 
sub-problems.

 
These answers will help solve future sub-problems and so on 
until they can be used to solve the actual problem.



Top down
(Memoization)

In normal recursion, you will see what you want to calculate/find 
at the end, and then calculate the things you need, as well as 
the things you need for the things you need, and so on. 


Unfortunately, this creates a lot of repetition, and we calculate 
many of the things we have already calculated before. This 
ultimately leads to an exponential time complexity. 


To solve this, we use memoization. Instead of recomputing the 
same values, we store them in memory, so if we have 
calculated it already, we just retrieve the result. This reduces the 
time complexity.



Example
SAPO round 2 Q3
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Example
SAPO round 2 Q3

Basically, we have to count the 
number of ways to go from the top 
left block to the bottom right, only 
moving down or right. We cannot 
pass through the “blocked” cells, 
marked with an “X” in the diagram.
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Example
SAPO round 2 Q3

Notice how every cell is 
just the sum of the 
numbers of the cells 
above and to the left.
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We first fill in the first 
row with 1’s (unless 
blocked)

We then work out each 
cell from left to right by 
summing the number in 
the cell above and left 
to it.


Finally, we get to the 
bottom right cell we 
want at the end.

Example
SAPO round 2 Q3
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Example
SAPO round 2 Q3

Code:

Time complexity: O(nm)



Example
SAPO round 2 Q3

This was an example of  
bottom up or tabulation, as 

we started at a point (the upper 
left cell) and calculated values 
in an order (row by row) until 

we got to the end (the bottom 
right cell
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If we wanted to solve this 
question using top down or 

memoization, we need to first 
look at how we would solve this 
problem using recursion. We 

need to start at the end (the right 
bottom cell), and see which cells 
we have to add to get this cell. 
Then, we see which cells we 

have to add to get those cells, 
and so on.

Example
SAPO round 2 Q3



Example
SAPO round 2 Q3

In the previous example, one of 
the cells had already been 

calculated more than once. As 
the grid gets larger, the amount 
of “repetitions” of calculations 
will grow exponentially. This is 
bad, as it increases the time 

complexity of the code.



Example
SAPO round 2 Q3

We use memoization to store 
the things we have already 

calculated in a list or somewhere 
in memory so we can just 

retrieve the result when needed, 
instead of recalculating the same 

thing many times.



Bottom up

(Tabulation)

So, when to use which one?

Top Down

(Memoization)



Bottom up
(Tabulation)

We use this method when there is an 
obvious and nice order in which you 
can calculate the sub-problems in 
such a way that you always have 
everything that you need already 

calculated for calculating the next/
future sub-problems.


(Like in the SAPO r2 q3, we can just 
do it by row)
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Bottom up
(Tabulation)

We usually use bottom up or tabulation when there is a nice 
order because it is faster to code and it runs faster, as recursion 
and memoization has a lot of recursive calls and return 
statements. It usually outperforms recursion by a constant 
factor.



Top down
(Memoization)

Sometimes, there isn’t a nice way to see where to begin and 
end a problem, or the order in which you do it is not clear. This 
is when memoization is more useful. Instead of trying to come 
up with a complicated order in which to evaluate the 
subproblems, we can just see the end and work backwards.


This works because, first of all, we do not know a order in 
which we can calculate the subproblem such that the 
predecessors have already been evaluated to be used to 
calculate the current subproblem.



Top down
(Memoization)

We use memoization in things like a directed acyclic graph that 
has not been topologically sorted to give an order for the 
bottom up or tabulation. Working backwards is easier as we do 
not have to follow an order, it just finds all the values. We also 
know this process is finite, as it is acyclic so there are no 
cycles, hence the process terminates.



Example
Coin problem

Let’s consider a problem where we are given a set of coins and 
our task is to form a sum of money n using the coins. The 
values of the coins are coins={c1,c2, . . . ,cm}, and each coin 
can be used as many times we want. What is the minimum 
number of coins needed for n?



Example
Coin problem

We could first try recursion. A recursion code for this would look 
something like:



Example
Coin problem

Unfortunately, recursion, just like in the SAPO r2 q3 problem, 
repeats a lot of calculations for the same thing.



Example
Coin problem

So, we use arrays to store the information. “Ready” tells the 
program whether the calculation has already been solved, and 
the “value” tells us what the value of the calculation is.



Example
Coin problem

So, a program using memoization would look something like 
this.

We store the information in the 2 arrays to retrieve information 
to avoid recalculation. O(nm)



Constructing a solution
Coin problem

Sometimes we are asked both to find the value of an optimal 
solution and to give an example how such a solution can be 
constructed. In our examples in the previous slides, they only 
tell us what the optimal solution is. Using DP, we can also get 
the actual coins that make up the optimal solution.



Constructing a solution
Coin problem

We can use an additional array to store the first coin in every 
solution.



Constructing a solution
Coin problem

We can then just change the code so it actually stores the first 
coins in the array.



Constructing a solution
Coin problem

Then, we can just calculate the coins in the optimal solution by 
just adding a few lines of additional code. We keep getting the 
“first coin”, and just remove the amount of the first coin and 
repeat.




