
DYNAMICROGRAMPMING IOI Training camp 2020

Minkyum Kim

DYNAMIC ROGRAMP MING

What is Dynamic Programming?

Dynamic programming is where you break down the
problem into smaller and smaller sub-problems.

Then, these sub-problems are solved in a way, and only
once (no repetition) and stored, so their results can be
re-used to solve more sub-problems.

The sub-problems can then be used to solve the
problem (e.g. summing, max, min, some function, etc.)

2 types of Dynamic Programming:

Bottom up

(Tabulation)

Top Down

(Memoization)

Bottom up
(Tabulation)

Bottom-up or tabulation is basically where you start at a
starting point in a graph, vector, table, etc. and you calculate
sub-problems in a specific order to store the answers to these
sub-problems.

 
These answers will help solve future sub-problems and so on
until they can be used to solve the actual problem.

Top down
(Memoization)

In normal recursion, you will see what you want to calculate/find
at the end, and then calculate the things you need, as well as
the things you need for the things you need, and so on.

Unfortunately, this creates a lot of repetition, and we calculate
many of the things we have already calculated before. This
ultimately leads to an exponential time complexity.

To solve this, we use memoization. Instead of recomputing the
same values, we store them in memory, so if we have
calculated it already, we just retrieve the result. This reduces the
time complexity.

Example
SAPO round 2 Q3

1

1

1

1

1 1 1

1

2

1 2

42

4

Example
SAPO round 2 Q3

Basically, we have to count the
number of ways to go from the top
left block to the bottom right, only
moving down or right. We cannot
pass through the “blocked” cells,
marked with an “X” in the diagram.

1

1

1

1

1 1 1

1 2

Example
SAPO round 2 Q3

Notice how every cell is
just the sum of the
numbers of the cells
above and to the left.

1

1

1

1

1 1 1

1

2

1 2

42

4

We first fill in the first
row with 1’s (unless
blocked)

We then work out each
cell from left to right by
summing the number in
the cell above and left
to it.

Finally, we get to the
bottom right cell we
want at the end.

Example
SAPO round 2 Q3

1

1

1

1

1 1 1

1

2

1 2

42

4

Example
SAPO round 2 Q3

Code:

Time complexity: O(nm)

Example
SAPO round 2 Q3

This was an example of
bottom up or tabulation, as

we started at a point (the upper
left cell) and calculated values
in an order (row by row) until

we got to the end (the bottom
right cell

1

1

1

1

1 1 1

1

2

1 2

42

4

If we wanted to solve this
question using top down or

memoization, we need to first
look at how we would solve this
problem using recursion. We

need to start at the end (the right
bottom cell), and see which cells
we have to add to get this cell.
Then, we see which cells we

have to add to get those cells,
and so on.

Example
SAPO round 2 Q3

Example
SAPO round 2 Q3

In the previous example, one of
the cells had already been

calculated more than once. As
the grid gets larger, the amount
of “repetitions” of calculations
will grow exponentially. This is
bad, as it increases the time

complexity of the code.

Example
SAPO round 2 Q3

We use memoization to store
the things we have already

calculated in a list or somewhere
in memory so we can just

retrieve the result when needed,
instead of recalculating the same

thing many times.

Bottom up

(Tabulation)

So, when to use which one?

Top Down

(Memoization)

Bottom up
(Tabulation)

We use this method when there is an
obvious and nice order in which you
can calculate the sub-problems in
such a way that you always have
everything that you need already

calculated for calculating the next/
future sub-problems.

(Like in the SAPO r2 q3, we can just
do it by row)

1

1

1

1

1 1 1

1

2

1 2

42

4

Bottom up
(Tabulation)

We usually use bottom up or tabulation when there is a nice
order because it is faster to code and it runs faster, as recursion
and memoization has a lot of recursive calls and return
statements. It usually outperforms recursion by a constant
factor.

Top down
(Memoization)

Sometimes, there isn’t a nice way to see where to begin and
end a problem, or the order in which you do it is not clear. This
is when memoization is more useful. Instead of trying to come
up with a complicated order in which to evaluate the
subproblems, we can just see the end and work backwards.

This works because, first of all, we do not know a order in
which we can calculate the subproblem such that the
predecessors have already been evaluated to be used to
calculate the current subproblem.

Top down
(Memoization)

We use memoization in things like a directed acyclic graph that
has not been topologically sorted to give an order for the
bottom up or tabulation. Working backwards is easier as we do
not have to follow an order, it just finds all the values. We also
know this process is finite, as it is acyclic so there are no
cycles, hence the process terminates.

Example
Coin problem

Let’s consider a problem where we are given a set of coins and
our task is to form a sum of money n using the coins. The
values of the coins are coins={c1,c2, . . . ,cm}, and each coin
can be used as many times we want. What is the minimum
number of coins needed for n?

Example
Coin problem

We could first try recursion. A recursion code for this would look
something like:

Example
Coin problem

Unfortunately, recursion, just like in the SAPO r2 q3 problem,
repeats a lot of calculations for the same thing.

Example
Coin problem

So, we use arrays to store the information. “Ready” tells the
program whether the calculation has already been solved, and
the “value” tells us what the value of the calculation is.

Example
Coin problem

So, a program using memoization would look something like
this.

We store the information in the 2 arrays to retrieve information
to avoid recalculation. O(nm)

Constructing a solution
Coin problem

Sometimes we are asked both to find the value of an optimal
solution and to give an example how such a solution can be
constructed. In our examples in the previous slides, they only
tell us what the optimal solution is. Using DP, we can also get
the actual coins that make up the optimal solution.

Constructing a solution
Coin problem

We can use an additional array to store the first coin in every
solution.

Constructing a solution
Coin problem

We can then just change the code so it actually stores the first
coins in the array.

Constructing a solution
Coin problem

Then, we can just calculate the coins in the optimal solution by
just adding a few lines of additional code. We keep getting the
“first coin”, and just remove the amount of the first coin and
repeat.

